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Require low delay, some frame erasures acceptable
Application layer: Speech compression must match 
available routes and links and satisfy QoS needs 
(intelligible speech vs. speaker recognition, etc.)
Network layer:  Routing should emphasize delay, 
high-quality (low bit error rate) routes not needed
Link layer: Reserve multiple time slots on each link 
via the channel access (MAC) protocol.  Detected 
errors may not result in a retransmission.
Physical layer: Low-rate codes on poor links (avoid 
retransmissions), high-rate codes on good links 
(reduce delay), energy conservation secondary
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The Need for Cross-Layer Protocols: 
A Voice Message Example
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Terminology (early 1980s to late 1990s):
• Interaction between network operation and the communication 

subsystem
• Interaction between layers in the network model
• Interplay between spread spectrum and network protocols
• Network layer issues merging with link layer issues
• Interactions between the network layer and the link and 

physical layers in a spread-spectrum radio network
• Integration of physical-layer information into routing 

protocols; use of receiver side information in routing
• Tightly coupled protocols; interactive protocols; integrated 

protocols
• No particular name or phrase; layers simply ignored
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Cross-Layer Protocols:  The Previous Millennium
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Some of the Protocol Interactions
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• Multiple-hop wireless spread-spectrum network
Store-and-forward relaying of packets required
Network must conserve energy (e.g., number of batteries)

• Frequency-hop or direct-sequence spread spectrum
• Dynamic environment

Variable propagation
Time-varying interference

• Multimedia traffic of three types
Delay-sensitive traffic, perhaps error-tolerant (e.g., voice)
Delay-tolerant, error-intolerant traffic (e.g., data)
Delay-tolerant, error-tolerant traffic (e.g., imagery)

Network and Traffic Characteristics
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network mobility
fluctuating traffic rate
multiple traffic types (multimedia)
variable propagation conditions
dynamic interference environment

source coding
error-control coding
symbol rate
modulation
spreading factor
transmit power

Time-Varying 
Transmission Requirements

adaptive transmission
adaptive routing

Clemson University

The Need for Adaptivity
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• Adaptive transmission protocol 
reduce energy and on-air time for delay-tolerant 
messages (e.g., decrease power, increase code rate)
increase reliability for delay-sensitive messages

• Adaptive routing protocol
conserve energy for delay-tolerant messages
sacrifice energy conservation for delay-sensitive 
messages

Clemson University

Cross-layer protocols for adaptive transmission 
and energy-efficient routing of multimedia traffic

Efficient Handling of Multimedia Traffic
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• Make each communication link as energy and time 
efficient as possible 

• Minimize detectability and interference for unintended 
recipients

• Supply routing protocol with energy-efficient paths
• Select routes that exploit differences in QoS

requirements to conserve energy

Goals of Adaptive Transmission and Routing

Clemson University
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• Half-duplex radios:  Feedback opportunities limited to ACK 
packets, reservation replies, control packets, etc.

• Channel adaptation: Primarily for such phenomena as changes in 
range, shadowing, and interference (not fast fading)

• QoS adaptation: Primarily for changes in QoS requirements from 
message to message when handling multimedia traffic

• Adapt to improve reliability when channel conditions deteriorate
or when required for QoS

• Adapt to reduce power and on-air time when channel conditions 
improve and QoS requirements permit (e.g., to save energy, 
reduce interference, provide LPI)

Clemson University

Adaptive Transmission in Tactical Networks
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Protocol Suite for Frequency-Hop Spread Spectrum

• Channel Access Protocol: RTS/CTS/ACK
• Receiver-directed FH patterns
• Adaptive Transmission Protocol:

• Use error count (t) and erasure count (e) to adapt code rate
and transmit power

• No power measurements needed
• Adaptive Routing Protocol:

• Least-resistance routing (LRR) -- a distributed distance-
vector routing protocol based on link resistance measures 

• Link resistance derived from metrics that account for link
quality, energy consumption, and backlog

• For multimedia traffic, link resistance depends on message  
type
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• Power selection based on e, t, and r

• Code selection (RS codes) based 
on erasure count, e

τc

(32,12)(32,24)

# dwell interval erasures

τ1 τ2
p = p(e,t,r)

+∆ dB-∆ dB no change
^

r = 3/4 r = 3/8

No power measurements needed!

Adaptive Transmission Protocol for FH 

Select new
transmission
parameters

Use new
parameters
for next
packet

Transmit
packet

Tx Rx

ACK
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Physical-Layer Statistics for Adaptive
Transmission in Direct-Sequence Spread Spectrum
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Performance Measures

• Correct packet: packet that is correct at intended receiver’s
decoder output

• Unit of energy: amount of energy required to transmit a packet
at the lowest code rate and highest power (max energy/packet)

• Throughput Efficiency (link):  Average number of correct 
packets at decoder output per unit of energy
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Channel State Information for FH 

Channel State (ρ,λ)
ρ = fraction of the band with interference
λ = propagation loss

Side Information - information about the channel state that
is derived within the communication receiver

Channel State Information (CSI) - information about the
channel state that is supplied from external sources
(e.g., special measurement system)

Perfect CSI - exact values of ρ and λ for the previous 
transmission provided to the communication system
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Channel with Intermittent Interference and 
Time-Varying Path Loss

Channel Model
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Routing with Adaptive Transmission
Example: A Dynamic Four-Node Network

S

A

D

B

Source

Destination

0 dB excess path loss
10 dB excess path loss

Channel State: (ρ, λ)

0 ρ

ρ = fraction of band for
interference at terminal B

α

1-β1-α

Partial-band interference at terminal B:

β

λ=0 λ=10

p

1-q1-p
q

Path loss, λ (dB):

I

Clemson University

Full power adequate for 10 dB excess loss
Without adaptation, each link uses full power
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Adaptive Transmissions

10 dB excess path loss
0 dB excess path loss

S

A

D

B Power level P (full power)

S

A

D

B

Route Selection, Two Transmission Protocols

Power level P−10 dB

Fixed Transmissions

With fixed or adaptive transmissions:

min-hop routing has no preference for upper vs. lower route

error probability, throughput, delay same for both routes

QoS routing has no preference for upper vs. lower route

Clemson University

All packets routed from S to D
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Adaptive Transmissions

10 dB excess path loss
0 dB excess path loss

Adaptive Transmission: enables upper route to use only 1/10 the energy required 
by lower route; creates opportunity for routing protocol to save energy

Least-Resistance Routing with appropriate resistance metric takes advantage of 
opportunity created by adaptive transmission

Physical-layer information required for routing metrics and adaptive transmission
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D

B Power level P (full power)
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Adaptive Transmission Creates an Opportunity

Power level P−10 dB

Fixed Transmissions
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Quality metric (reception quality)
I(A,B) = (2t + e)/20   [max redundancy is 20 for code set]
# of errors (t) and erasures (e) in previous transmission

Energy metric (energy consumption)
U(A,B) = P(A,B) rmin / Pmax r(A,B) 
rmin = min code rate;  Pmax = max transmitter power
r(A,B) = code rate for next transmission A→ B
P(A,B) = power for next transmission A→ B

Clemson University

LR(A,B) = α1I(A,B) + α2U(A,B) + c

Resistance Metrics for Generic Traffic
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Four Resistance Measures

quality: α1 = 4, α2 = 0, c = 1
 LR(A,B) = 4 I(A,B) + 1

energy: α1 = 0, α2 = 10, c = 0
 LR(A,B) = 10 U(A,B)

hybrid: α1 = 2, α2 = 2.5, c = 1
 LR(A,B) = 2 I(A,B) + 2.5 U(A,B) + 1

min-hop: α1 = 0, α2 = 0, c = 1;  LR(A,B) = 1

LR(A,B) = α1I(A,B) + α2U(A,B) + c
Resistance coefficients:

Clemson University
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Multimedia Considerations in LRR

Clemson University

S

A

D

B

Source

Destination
I

10 dB excess path loss
0 dB excess path loss

C Traffic from C causes backlog at A

Voice traffic (previous example) and data traffic from S to D:
• Backlog at A causes delay for route S-A-D, but S-A-D suitable
for data traffic; energy conserved if data packets use S-A-D

• Interference causes frame erasures in voice traffic sent over S-B-D,
but meets QoS requirements for voice; S-B-D requires more energy

• Approach:  Conserve energy for data packets, sacrifice energy
conservation for voice packets to meet delay constraint

• Requires interaction among Application/Transport, Network, Link,
and Physical Layers

Interference causes bit errors at B
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Resistance Measures for Multimedia Traffic

• Each type of traffic routed independently
• Resistance measure tailored to service requirements

Emphasize energy consumption for delay-tolerant traffic
Emphasize backlog at nodes for delay-sensitive traffic

• MM resistance measures (link A→ B):
LRd(A,B)= 2 I(A,B) + 8 U(A,B) + cd

LRv(A,B)= 4 I(A,B) + W(B) + 2.5 U(A,B) + cv

Backlog metric for terminal B:
W(B) = Nv + ω Nd

Ni = # packets of type i (voice or data) in B’s buffer
Clemson University
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Performance Measures

Correct packet: packet that is correct at destination receiver’s
decoder output

Unit of energy: amount of energy required to transmit a packet
at the lowest code rate and highest power (max energy/packet)

Throughput Efficiency (network): Average  number of 
correct packets at decoder output of destination terminal per 
unit of energy transmitted by all terminals in network
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Generic vs. Multimedia Traffic

• Simply minimizing energy gives poor performance
• Routing based on link quality and min-hop routing 

give poor throughput efficiency
• Hybrid quality-energy routing is best compromise for 

generic traffic

• Emphasize conserving energy for delay-tolerant 
messages 

• Can sacrifice energy conservation for delay-sensitive 
messages

• Multimedia energy-efficient (MMEE) routing

Clemson University
APPROVED FOR PUBLIC RELEASE



D3

S5

S1

S4

S2

D5

D4

D1

D2

S3

38-Node Network  

• Node Si generates voice packets for destination Di 
• Unlabeled nodes generate data packets with random destinations
• Interference occupies 20% of band, affects 15 nodes
• Network uses adaptive transmission (2 code rates, 8 power levels)

Clemson University

Partial-band interference
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Throughput Efficiency (Data)
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Voice traffic generated at fixed rate of 0.01 packets/packet interval
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Throughput Efficiency (Voice) End-to-End Delay (Data)
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Voice traffic generated at fixed rate of 0.01 packets/packet interval
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Throughput Efficiency (Data) End-to-End Delay (Voice)

Clemson University

1

2

3

4

5

6

7

8

0.03 0.04 0.05 0.06 0.07

D
el

ay
 fo

r V
oi

ce
 P

ac
ke

ts
 (P

ac
ke

t I
nt

er
va

ls
)

Data Packet Generation Rate, λ
d

MMEE (8)

energy

quality,
hybrid,
min-hop

MMEE (5)

1

1.5

2

2.5

3

3.5

4

4.5

5

0.03 0.04 0.05 0.06 0.07

Th
ro

ug
hp

ut
 E

ff
ic

ie
nc

y 
fo

r D
at

a 
Pa

ck
et

s

Data Packet Generation Rate, λ
d

MMEE (8)

energy

hybrid

quality

min-hop

MMEE (5)

• 45 nodes generate data traffic with uniformly random destinations; 10 voice connection pairs
• packet generation rates are in packets per packet interval; voice generation rate is twice λd

Performance of MMEE Routing for 
65-Node Network with Multimedia Traffic
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General Conclusions

• Hybrid quality-energy measure is the best compromise for 
generic traffic

• MM resistance measures lead to high throughput efficiency for 
delay-tolerant traffic and low delay for delay-sensitive traffic 

• Best resistance measures for multimedia traffic are the MM 
resistance measures

• Interaction among layers is essential for energy-efficient routing 
of generic or multimedia traffic
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